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The French Society of Pathology (SFP) organized its first data challenge in 2020 with the help of the Health Data Hub
(HDH). The organization of this event first consisted of recruiting nearly 5000 cervical biopsy slides obtained from 20
pathology centers. After ensuring that patients did not refuse to include their slides in the project, the slides were
anonymized, digitized, and annotated by expert pathologists, and finally uploaded to a data challenge platform for com-
petitors from around the world. Competing teams had to develop algorithms that could distinguish 4 diagnostic classes in
cervical epithelial lesions. Among the many submissions from competitors, the best algorithms achieved an overall score
close to 95%. The final part of the competition lasted only 6 weeks, and the goal of SFP and HDH is now to allow for the
collection to be published in open access for the scientific community. In this report, we have performed a “post-compe-
tition analysis” of the results. We first described the algorithmic pipelines of 3 top competitors. We then analyzed several
difficult cases that even the top competitors could not predict correctly. A medical committee of several expert patholo-
gists looked for possible explanations for these erroneous results by reviewing the images, and we present their findings
here targeted for a large audience of pathologists and data scientists in the field of digital pathology.
Introduction

The French Society of Pathology and the Health Data Hub set up a chal-
lenge in digital histopathology published on DrivenData in 2020.14 The
data for this challenge includes thousands of microscopic slides of uterine
cervical tissue from medical centers across France. The objective was to
classify each image according to the most severe category of epithelial
.
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lesion present in the sample. The classes are defined as follows according
to the WHO classification:

• 0: benign (normal or subnormal),
• 1: low malignant potential (low grade squamous intraepithelial lesion),
• 2: high malignant potential (high grade squamous intraepithelial lesion),
• 3: invasive cancer (invasive squamous carcinoma).
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Data

This dataset consists of high resolution images of microscopic slides cre-
ated from cervical biopsies. Additionally, the competitors were given slide
metadata as well as annotations for the training set that outlined some (but
not necessarily all) of the lesions present on a slide.

The training set images were provided in 3 formats: native whole slide
image formats (720 GB), pyramidal TIFs (928 GB), and down-sampled
JPEGs (752 MB). The organizers provided just the annotated regions of
each slide at full resolution to further support prototyping. The training
folder contained images in their native digital pathology format, known
as whole slide images (WSIs used as digital representations of amicroscopic
slide at high levels of magnification and at extremely high resolution in size
(e.g., 150 000 × 85 000 pixels)). There are 4 native WSI image formats in
the dataset across the different centers: .mrxs (3D Histech)/.svs (Leica)/.
ndpi (Hamamatsu)/.tif (pyramidal TIF). The tif images folder contained
the training images as a standardized set of compressed images in pyrami-
dal TIF format. These images are compressed using JPEG Q = 75. The py-
ramidal TIF format maintained a sufficient level of detail for pathologists to
perform diagnoses while enabling smaller file sizes and easier loading with
actively developed Python libraries such as PyVips.

The downsampled images folder contained JPEG versions of the images
that have been downsampled by 32x. While these images likely do not con-
tain sufficient information for diagnosis at this resolution, theymay be partic-
ularly helpful for prototyping model pipelines. The annotated regions folder
contained JPEG versions of the annotated portions of the slides at full resolu-
tion. The annotated regions were defined by geometry in a specific csv file.

Annotations

The images are very large and contain a mixture of pathological and
otherwise normal tissue. Pathologists have annotated images to point out
regions that represent lesions. The train_annotations.csv contained the fol-
lowing information: a unique identifier for each annotation, the slide
image filename corresponding to each annotation (each image containing
multiple annotations), (x, y) coordinates of the annotation in WKT format
(all geometries being closed rectangles and assuming origin is bottom left
corner of the image), the class of the annotated tissue, the file locations of
the annotated region jpeg in the public S3 (Simple Storage Service on the
cloud) bucket in different regions of theworld in the USA, Europe, andAsia.

Annotations were only provided for the training set and were not pro-
vided for the test set. When working with the annotations, it was important
to keep in mind the following points:

• The annotated regions do not necessarily include all lesions in the slide. An
unannotated region is not necessarily normal tissue.

• The whole image class label and the annotation class label do not necessar-
ily match. The annotated regions may be the image’s labeled class or
below. For instance, an image labeled as a class 2 lesion could have anno-
tations representing class 0, 1, or 2. At least some of the annotated regions
represent the most severe/labeled class. All annotations on a slide with
label 0 is considered as normal tissue.

• The lesion may fall entirely within the square, or may extend beyond the
annotation boundaries.

• All annotations are a fixed size of 300 x 300micrometers. As images have
different resolutions in pixels/micrometer, annotations will have differ-
ent dimensions in terms of pixels.

Aims and objectives of the challenge

The fields of application of artificial intelligence (AI) are expanding
every day, particularly in the world of healthcare, a promising field given
the mass of data generated for diagnosis and care.1,2 Whether it is for intel-
ligent patient monitoring using connected devices, for choosing the best
treatment for a patient based on several sources of diagnostic data, or for
optimizing analytical processes in biology or imaging, applications are
2

multiplying, driven by multiple players, academic, and/or industrial.
Many medical devices using AI have already been approved in the United
States and Europe.4

Advances in the field of image analysis in general and in particular in
medical imaging5 are driven by the ability of machine neural networks to
classify images after a more or less supervised learning phase, but some-
times also without prior learning, highlighting links between images and
the prognosis of a disease or the response to a treatment. In pathology,
promising applications6 and guidelines on AI in pathology7,8 are starting
to emerge.

Developing anAI algorithm in healthcare requires strong computational
and statistical expertise, but also quantity and quality of data, accounting
for as many as possible of all real-life situations.1 Access to representative
and richly annotated health data is currently the main limiting factor for
the development of AI algorithms.

A data challenge is a real opportunity to bring together both multiple
data science expertise and a large collection of quality data. On the one
hand, organizing a competition with a reward can mobilize a whole com-
munity of developers and data scientists. On the other hand, this large mo-
bilization of a scientific community stimulates upstream the involvement of
data producers. It is the conjunction of these 2 dynamics that might lead to
the best algorithms. Even if the algorithms developed during a data chal-
lenge still have many steps to go through before being validated for use
in medical practice, they already provide the first proof of concept of
their potential interest.

Data challenges on medical and clinical images have already been orga-
nized in recent years. We can mention those of French radiologists since
2018,9,10 and the Camelyon 16 and 17 in pathology.11 A recent review
paper reported several data challenges in pathology andwhat these compe-
titions brought to this speciality.12

For the 2020 Data Challenge organized by the French Society of Pathol-
ogy (SFP) and the Health Data Hub (HDH), the prospect of an international
competition withwinner announcement at the FrenchNational Congress of
Pathologists “Carrefour Pathologie” in 2020 helpedmobilize the pathology
community to produce a large database of cervical lesions. In this article,
we detail the construction and progress of this competition and above all
discuss the results by a retro-analysis of the errors made by the winners
and its prospects.

For this first edition of the SFP-HDH data challenge, a classification
question was chosen to assist the pathologist in the diagnosis of cervical ep-
ithelial lesions. This disease area was chosen because its high frequency in
diagnostic practice and because it has not yet been studied from the point of
view of a diagnostic approach by AI.

The question submitted to the algorithms for this data challenge was
therefore their ability to classify cervical biopsy slides into one of the four
WHO diagnostic categories,13 from “normal” to invasive carcinoma,
through low- or high grade lesions. The algorithms were asked to identify
on each slide the most severe diagnostic class.

Cases and methods

Expert annotation of cases

The virtual slides were uploaded on a server of the HDH in order to be
annotated by the expert pathologists. The software used to visualize and an-
notate the virtual slides was the open-source software Cytomine.org
(https://cytomine.be/) which was installed on the HDH servers, after
some developments by Cytomine to adapt it to the annotation process by
the pathologists.

4934 slides were included in the project and put online on the HDH
servers, including 3709 cervical biopsies and 1225 surgical samples limited
to a cone-shaped portion of the cervix called conizations. These conization
slides were not included in the final competition but might be used later to
enrich the image bank available to researchers. Among the 3709 biopsy
slides, 2542 were reviewed by the 5 expert pathologists (SP, CB, MD, GB,
and CG)who indicated themost severe diagnostic class present on each slide.

http://Cytomine.org
https://cytomine.be/
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Following this diagnostic annotation phase, the 2542 slides were dis-
tributed in 3 distinct groups: 1015 slides for the learning set, 513 slides
for the test set, and 1014 slides for the final validation set, thus avoiding
that competitors overfit on a single test set after multiple submission. For
each set of slides, the proportion of each of the 4 diagnostic classes had to
be as close as possible to 25% in order to balance the classes.

On the 1015 slides of the training set, the experts then added more pre-
cise visual annotations: 300-micron squares were placed not only on the
most severe diagnostic class lesions, but also on less severe diagnostic
class lesions if present, with different colored squares used to distinguish
the 4 diagnostic classes (Fig. 1). A maximum of 10 squares for a single
class were deposited on each slide, summing up to 5941 visual annotations
on these 1015 slides.

All 2542 slides annotated for the competition were reviewed succes-
sively by 2 expert pathologists. Some cases required the 2 pathologists to
agree during consensus meetings, leading to the exclusion of some cases
considered too difficult or of insufficient technical quality. The 1015 finely
annotated slides constituted the training set of the data challenge, the visual
annotations deposited by the experts being used as references of the 4 le-
sion classes by the competitors. The 2048 unannotated slides were also
made available to the competitors as additional learning data if they
wished. Some slides were deleted during the annotation phase because
they had defects that made their analysis impossible.

The training slides were analyzed and exploited to feed the algorithms
with the competitors’ computing resources. These algorithms could then
be tested on the set of 513 test slides, allowing each competitor to have
an idea of its degree of progress compared to the other competitors thanks
to a ranking on an “intermediate leader-board” available during the whole
challenge timeline. Thefinal ranking, displayed on the “final leader board”,
was calculated on the set of 1014 validation slides. Competitors submitted
their algorithm on the Driven Data platform as a package and the calcula-
tions for the test and final validation set were performed directly with the
platform’s graphics processors (GPU, Graphics Processing Unit).

Three of the competitors put on the challenge website some elements
describing their solution, accessible at.14 Their algorithms and software
have been opened in open source and deposited on GitHub at.15
Fig. 1. An example of a slide with annotations for the training on the Cytomine Server
collaborative analysis of multi-gigapixel images). (All figures in this article must be seen
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We present the algorithmic pipelines and results of the 3 most promis-
ing contestant’s pipelines according to clinical criteria of explainability
and reproducibility in the context of clinical routine. Here unfolds a
description of each of these 3 contestant’s methods:

1. Lifeis2Short from Tongji University, Shanghai, China
2. Algoscope, Compiègne, France
3. Tribun Health, Paris, France

From a legal and ethical perspective, this data challenge falls within the
French regulatory framework of the Reference Methodology n°004, which
has been declared to the French Data Protection Authority (CNIL). The en-
tire visualization of certain slides for the unique needs of the publication of
the results of the research project is carried out in compliance with this reg-
ulatory framework and the de-identification of patients.
Lifeis2Short processing pipeline and WSI analysis results

Methodology
Fig. 2 shows the outline of the method pipeline. First, they trained a

patch level classification neural network. The official pre-extracted patches
have different sizes, considering the effect of different scales, they extracted
a 320*320 size patch on level 2 (¼ size of level 0) according to the coordi-
nates. After training, they used the Otsu thresholding algorithm to extract
the tissue area, then extracted the patches with a sliding window with a
step size of 256 on the Level 2 tissue area and generated the probability
map of each category. They extracted the designed features from each prob-
ability map separately, concatenated them together, and used machine
learning models such as Xgboost, LightGBM, and Random Forest for classi-
fication. The main contribution of the pipeline is the optimization of every
step in the algorithm.

First of all, as shown in Fig. 3, they found that the original Otsu-like tis-
sue region extraction algorithm is not applicable to all data. Firstly, the
blank areas on the whole slide image may affect the results. Therefore,
they added some judgments and filtering thresholds when generating the
tissue map, and achieved good tissue segmentation results on all the
(available at https://cytomine.be/ as an open-source rich internet application for
in color).

https://cytomine.be/


Fig. 2. Lifeis2Short team methodology.

Fig. 3. Thresholding.
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images. Secondly, the tissue area might be too small, causing the algorithm
to extract the tissue mask on the low-level image and fail to recognize it.
They made a comparison on different levels, and finally designed an adap-
tive level region extraction algorithm. The effect is shown in the Fig. 4.

Besides, they found out that the difficulty of the task was mainly to dis-
tinguish between 0 and 1 subtype. The information that can be obtained
from labeled patches of these 2 subtypes is limited, in order to ensure that
the model was correct, they needed to learn the discriminative features of
the 2 subtypes. They extracted a large number of 0 patches from the labeled
0 WSI to make the distribution of 0 subtype closer to the true distribution.
After adding a large number of class 0 type patch to the training data, the
result has been greatly improved, from 89% to 92%. In addition, they
found out that using random sampling patch as shown in Fig. 5 provided
Fig. 4. Comparison results.
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better results than grid sampling, and the local verification score of random
cropping was 95%. The local verification score for grid clipping was 93%.

They also tried different classification network architectures. Eventu-
ally, DenseNet201 achieved good results, possibly because DenseNet has
fewer parameters and can avoid overfitting. In addition, they also tried
the more recent EfficientNet, and they obtained better results than
Densenet201, but due to virtual environment problems, DenseNet201
was still used in the final result.

After integrating all the above improvements, the classification model
score reached 0.9306 on the public leader-board and 0.9332 on the private
leaderboard. It is worth noting that there was an error in one of their sub-
missions, i.e., different image sizes were used for inference and training.
As a result, the 0 categories of the training set on whole slide image level
were all classified as category 1 in their local verification. This is obviously
a bad model. It has also achieved very poor results on the public list, but it
has greatly improved on the private list.

In addition, they also tried some new improvements, such as pseudo-
label to use unlabeled data. However, due to the limited number of submis-
sions, they did not submit this to the system. But they believe that it can
yields better results.

WSI analysis results
Their algorithm is hereby explained over a few slides according to the

contestant’s choice:

• C12_B091_S12,
• C12_B108_S12 (from the class 3 training set),
• C12_B098_S12 (from the class 0 test set predicted class 1),
• C11_C046_S11 (with a reference to C08_B023_S08 further discussed in
the Discussion section).

• Incorrect labeling. There are mislabels in the labeled patch dataset. For
example, a patch which is actually 0 (white area) and labeled as 2 (for in-
stance in the slide C12_B528_S12). This one is obviously an error of anno-
tation. Being not pathologists, it was difficult for them to assess howmany
incorrectly labeled data in the dataset.

• Data distribution. There are 2 steps in the method, the first step is patch
level classification, and the second step isWSI level classification. Accord-
ing to the experimental results, the first step of patch classification is par-
ticularly important. They found out that if some 0-category patches are
sampled from the labeled 0 WSI data as a supplement to the original
patch annotation data, the results will be greatly improved. It shows
that it is difficult for a given 6000 labeled patches to cover the actual



Fig. 5. Grid sampling.
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data distribution of each category. This is the main reason for the poor
classification effect. According to our experimental results, class 0
and class 1 have similar data distributions and they are particularly
difficult to distinguish. They hence think that this is the difficulty of this
competition.

• Picture granularity. Take a specific patch in WSI C12_B091_S12 as an ex-
ample (see Fig. 6). In our re-test experiment, the label is 2 and the predic-
tion is 0. We can see in Fig. 6 that the left subgraph should be category 2,
and the right subgraph should be category 0. They hypothesize that the
classification model considers the main features, i.e., there are more
areas in class 0 than in class 2 on this image. But if images are annotated
on 2 finer sub-images on the left and right the ambiguity of the classifica-
tion can be greatly reduced.

• Hard mining with difficult classification data. Their model does not per-
form hard mining on the data, i.e., mining hard-to-divide samples. They
that add weight to difficult samples that are incorrectly classified by the
model will result in better results.

They also found out that the patch classification model predicted
some patches of category 3 as category 0, such as C12_B108_S12 from
the training set (See Fig. 7 (left) and (right)). For C08_B023_S08 and
C11_C046_S11, they have also extracted images with similar surface fea-
tures (See Fig. 8 (a) and (b) localized in the slide (c) and (d)). The method
predicts some patches of category 3 as category 0 in C08_B023_S08 and
C11_C046_S11. This led to wrong predictions at the WSI level. In short,
the reason is that their model did not learn and cover the feature of the
misclassified image.
Fig. 6. A specific patch image in the slide C
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On the whole, this competitor believes that the classification error is
due to the limited and sometimes not completely correct annotations that
cannot cover the entire data distribution, making the model prone to
over-fitting on the limited annotation data. Therefore, the team extracted
a large number of patches of category 0 in order to improve the classifica-
tion performance, stressing out that it is very important to dig out the distri-
bution patterns of each category from original data.

Algoscope processing pipeline and WSI analysis results

The team led by a pathologist tried to tackle the challenge by following
a “business-oriented” approach. They developed a solution that tries to
mimic the pathologist approach when diagnosing a cervical biopsy. By
doing this way, it was hence possible to explain precisely to the pathologist
the final score of the algorithm. In a few words, the algorithm extracted all
regions of interest from the whole slide that characterize a lesion (Low
grade, High grade, or Invasive carcinoma), assigned them to 1 of these 3
classes with a probability score, and then return a global score to the
whole slide image.

A set of annotations was provided with the training set, but unfortu-
nately, the size of the batch was not suitable. As mentioned in the problem
description: “The annotated regions may be the image’s labeled class or
below”. For example, annotations associated with a high grade lesion
slide could contain characteristics of low- and high grade lesion. So, the
first thing they did was to ask the pathologist to make a new set of annota-
tions that were divided into the 4 mentioned classes (hundreds of image
tiles for each class). Then, they trained this set of images on several
12_B091_S12 labeled 2 but predicted 0.



Fig. 7. Patches from slide C12_B108_S12 (bottom) with annotated patches from the experts in the training set (top left) C12_B108_S12_2 and (top right) C12_B108_S12_3.
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open-source pre-trained Deep Neural Networks (Resnet-50, Google Incep-
tion, etc). Finally, they used the best output model for inference of tiles con-
taining tissue within the whole slide.

Methodology
The complete algorithm for classifying a whole slide image can be

described as follows:

1. Create 3 empty lists for each lesion class
(Low grade, High grade and Invasive carcinoma)
2. Loop over tiles of the slide at zoom x2.5
3. For each tile:
a. Convert it to a grayscale image.
b. If 99% of pixels are greater than a white threshold or less than a black threshold

(i.e. tile image is almost totally white or dark, so it does not contain tissue), then
ignore it.
6

c. Otherwise, subdivide this tile in several sub-tiles at zoox5.
d. For each sub-tile:
i. Detect if it contains tissue (same algorithm at 3.b). If not, ignore it.
ii. Otherwise, infer the trained model on the original sub-tile. If one of the 3 lesion types is

detected with a probability greater than 70%, then add the sub-tile coordinates to the
associated list.

4. Loop over the 3 lesion lists:
a. If all lists are empty, then assign the class 0 (normal, benign) to the image
b. Otherwise, if Invasive cancer list contains at least one element, then assign the class 3

(Invasive cancer) to the slide
c. If Invasive carcinoma list is empty and High grade list contains at least one element, then
assign the class 2 (High grade) to the slide

d. Otherwise, if only Low grade lesion list contains elements, then assign the class 1 (Low
grade) to the slide

Algoscope was granted access to the HPC resources of IDRIS (www.
idris.fr): training was done using an Nvidia Tesla V100 installed on the
Jean Zay super calculator (provided by GENCI - https://www.genci.fr to

http://www.idris.fr
http://www.idris.fr
https://www.genci.fr


Fig. 8. From top to bottom: 2 patches from the original slide C11_C046_S11 (middle) with the location of the top right patch and the original slide C08_B023_S08 (bottom)
with the location of the top left patch in the slide (see Discussion in Data challenge results section ).
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IDRIS). About 15 hwere necessary to train themodel. The following Python
libraries were used: TensorFlow 2.2 (for DNNs) / PyVips (for reading TIFF
images) / PIL (for image processing).

On a laptop equipped with an Nvidia GTX 1060 and Intel(R) Core(TM)
i7-8750H CPU @ 2.20 GHz, the mean average duration for classifying a
whole slide image with this algorithm is about 20 s.

The team believes that the efficiency of the algorithm could be greatly
improved by adding images during the training phase. Since theymanually
labeled the dataset and the pathologist was not completely dedicated to this
task, they were running out of time, so they decided to train neural net-
works on only a few hundreds of tile images for each class. They also con-
sider some augmentation data to improve robustness.

WSI analysis results
Their algorithm is hereby explained over a couple of slides according to

the contestant’s choice:

• C04_B052_S04
• C12_B438_S12
• C06_B040_S21

The goal was to understand why it failed to give the correct score on
those specific cases, and how they could improve the solution.
Fig. 9.Class 0 slide misclassified as class 3 onWSI C04_B052_S04with details above of cl
Algoscope folder).

8

WSI C04_B052_S04:
Experts scored this slide in class 0. The submitted algorithm detected

2 zones identified as class 3 (see Fig. 9). The review of this misclassified
area by pathologists experts showed that it consisted mostly of inflam-
matory cells. Nevertheless, the probability (Index of confidence of the
algorithm) for this classification was relatively low (≈76.5%) compared
to zones identified within most of other slides (≈95%). Therefore,
increasing this threshold (e.g., 85% instead of current 70%) could
improve the efficiency of the solution and eliminate some false-positive
class 3 zones.

WSI C12_B438_S12:
Experts scored this slide in class 0 (see Fig. 10 for a global view). The

output of the algorithm consists of some tiles labeled as class 1 (Blue,
Fig. 11), and some as class 3 (Red, Fig. 12). So the given final score was
therefore class 3.

They also put here some tiles of C06_B040_S21 slide (score 0 according
to experts) that were considered as class 3 by their algorithm (see Fig. 13).

The competitor compared those tileswith some expert annotations from
public dataset, and it seems that at this magnification (zoom x5) it is diffi-
cult to make a correct classification for some specific cases. Any doubt
quickly vanished when zooming to a higher magnification (zoom x10).
The reason they did not exploit tiles at this high magnification was to
ass 3 areas (See SupplementaryMaterial to dig into the images at better resolution in



Fig. 10. Misclassified as class 3 instead of class 0 on WSI C12_B438_S12 (See Supplementary Material to dig into the images at better resolution in Algoscope folder and
Figs. 11 and 12 hereinafter for details).
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save processing time, since the proposed solution had to process many
slides in a very short time. An easy way to overcome this problem would
be to re-process the only tiles tagged with abnormalities (class 1, 2, or
3) at higher magnification.

To sum up, the competitor concluded that its algorithm’s errors are
“humanly understandable” by pathologists: spongiosis mistaken for a low
grade lesion (class 1); tangential cut artifact or benign squamousmetaplasia
colonizing the endocervical glands mistaken for an invasive carcinoma
(class 3). All these challenging areas of the slide were confirmed by the
panel of expert pathologists. These errors could be made by a junior resi-
dent, and it shows that somehow their algorithm achieved the goal of
adopting the most faithful as possible approach to the real practice of
pathologists.
Fig. 11. Details of class 0 classification on WSI C1

9

Tribun health processing pipeline and WSI analysis results

Methodology
Tribun health end-to-end processing pipeline consists of 4 steps, as

shown in Fig. 14.

Tissue detection. They color-normalized the input WSI and segment the
foreground tissue mask at image level 6 (16 μm/pix), which offers a com-
promise between the execution time and the detection quality. Color nor-
malization ensures the WSI background to be white (no absorption). They
corrected this by selecting a frame close to the outer edge of the scanned
area - where no tissue is expected - and take the median of each channel.
After normalization, they used Otsu’s method to detect tissue areas,
2_B438_S12, normal or spongiotic epithelium.



Fig. 12. Details of area misclassified as class 3 on WSI C12_B438_S12, squamous metaplasia of endocervical gland on the top panel, mucus on the bottom panel.
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followed by some morphological filtering opening/closing to clean small
defects in the mask.

Multi-resolution, ensemble-based patchwise classification. They used a multi-
resolution ensemble CNN to predict healthy and CIN1-3 class probabilities
per patch.
Fig. 13. Algoscope: Patches classified as class 3 while the slide C06_B040_S21 was diagn
infiltrates that can be confusing (See Supplementary Material to dig into the images at b
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Patch resolution. Accurate CIN classification requires both sufficiently
high resolution and enough context on the full thickness of the epithelium.
Therefore, their ensemble CNN uses a range of patch sizes and resolutions:
256 × 256 at level 3 (2 μm/pix, high resolution, less context),
256 × 256 at level 4 (4 μm/pix, lower resolution, more context) as well
as 384 × 384 at 2 μm/pix.
osed class 0 by the experts. The misclassified area contains vessels and inflammatory
etter resolution in Algoscope folder).



Fig. 14. Tribun Health’s end-to-end cervical cancer classification pipeline.

Fig. 15. Slide C11_C046_S11 classified as class 0 and the various heatmaps for every
class (most of the interesting WSI and heatmaps are available as Supplementary
Material at a good resolution in order to probe them in further details: Folder
Tribun_HeatMaps/C11_C046).
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CNN ensemble. For their CNN ensemble, they used DenseNets,1 as they
found it outperforms other (ResNet) architectures. They used DenseNet169
on level 4 patches and DenseNet121 on Level 3 patches, both pre-trained on
ImageNet. To improve performance, they trained a linear combination of
the 5 models (2 on level 4, 3 on level 3), followed by a softmax layer to out-
put the final 4 CIN class probabilities per patch.

Data augmentation and training parameters. They augmented the data
using digital pathology specific HED color augmentation,2 random linear
transformation, Cutout3 and CutMix.4 To train each CNN, they used 200
epochs with a learning rate of 5 × 10−2 and use Xavier weight initializa-
tion. For classification, they used the categorical cross-entropy loss and
add a l2 weight regularization with λ ∈ [0.01 − 0.5] depending on the
dataset.

Hard Negative Mining (HNM). Healthy tissue annotations were given
primarily in the epithelium, giving the network a bias towards
non-epithelium healthy tissue. They used HNM to enrich the training
data. After a training on annotated patches, they did a full inference on
all normal tissue slides and added misclassified CIN1, CIN2, and CIN3
patches to the training data. They did the same in CIN1 slides for CIN2
and CIN3 predictions, and CIN2 slides for CIN3 predictions.

Slide-wise SVM classification. Depending on the amount of tissue in the
slides, the number of tiles actually analysed varies from less than 5 up to
7000. The aggregation step consists in calculating, for each class separately,
statistics on the previously calculated patch predictions, and concatenating
them into a vector of fixed size. Specifically, they calculated a histograms
features hm,i , with m being the mth histogram bin value and i being the
the slide class, i = 0, 1, 2, 3, as well as percentiles p90,i , p95,i , p99,i such
that we obtain feature vector

Ẍ= [h0,0 ,… , hm−1,0 , h0,1 ,… , hm−1,1 ,… hm−1,3 , p90,0 ,… , p99,3 ].

Slide-wise SVM classification. Given feature vector Ẍ, they used SVM to pre-
dict the probability distribution p = [p0 , … , p3 ] that the slide belongs to
class 0–3. They did this prediction using 10-fold cross-validation on the
patch prediction validation data. They also used the contest reward matrix
R ∈ R4×4 to maximize the expected score. The final prediction is chosen
from gain r = pR as i∗ = argmaxi ri .

WSI analysis results
Some of the errors made by Tribun Health algorithm are explained over

a couple of slides according to the contestant’s choice:
- Slide C11_S046_S11 is classified as class 0 by the algorithm while it is

class 3 according to the pathologists’ consensus.
11
- C11_S002_S11 is classified as class 3 by the algorithmwhile it is class 0
according to the pathologists’ consensus.

To understand the algorithm decision, the heatmaps showing the prob-
ability of belonging to class i, i = 0, 1, 2, 3 at a patch level are displayed in
Figs. 15 and 16 for slides C11_S046_S11 and C11_S002_S11 respectively.

The heatmaps of slide C11_S046_S11 show that the CNI 3 region is well
detected by the patchwise classifier but not considered by the whole slide
classifier.

This could be explained by 2 reasons:
1) the extracted vector features are not enough informative for repre-

senting the heatmaps. One should consider additional ones like the
class size or average intensity for example.

2) The features are well representing the heatmaps but the slide classi-
fier is biased toward class 0. Hard negative mining at slide level is a
good option to improve these cases.

However, the heatmaps of slide C11_S002_S11 show clear false-positive
detections in class 3misleading themodel decision toward class 3. To avoid
these errors, one can add another round of hard negative mining of the
patchwise model.

They proposed heatmaps exhibiting the different regions responding
at different class test from 0 to 3 as illustrated in Fig. 15 for slide
C11_C046_S11 and Fig. 16 in slide C11_C002_S11.

Pathologists’ discussion. The slide C11_C046_S11 in Fig. 15 contains an
area of deep invasive carcinoma not connected to the surface of the sample,
probably explainingwhy none of the 3 algorithms could identify it as a class



Fig. 16. Slide C11_C002_S11 aclassified as class 3 and the various heatmaps for every class (Folder Tribun_HeatMaps/C11_C002 in Supplementary Material: Folder
Tribun_HeatMaps/C11_C002).
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3 area. Moreover, the sample is a big piece of tissue, and the training set did
not contain many of those big samples, making it difficult for algorithms
that learned mostly on small biopsies. Again, the slide C11_C002_S11 in
Fig. 16 showed a bigger tissue sample than most of the others, and 2 of
the 3 competitors falsely identified class 3 areas in this slide while the ex-
perts classified it as class 0. The misclassified areas contained some vessels
and technical artifacts such as tissue folding. This pathologist discussion
will be further extended in the Pathologists’ discussion section 3.3 about
the post hoc analysis of the results by a board of pathologists.

Data challenge results and detailed medical post-analysis

Challenge results

Global performance of each algorithmwas evaluated according to a cus-
tommetric devised by a panel of expert pathologists. The score for each pre-
diction equals 1 minus the error, where the error weighting for
misclassification has been set by an expert consensus within the scientific
council as defined in Table 1 below. The total error is the average error
across all predictions. Note that the metric is symmetric, e.g., predicting
class 3 when it is actually class 0 produces the same error as predicting
class 0 when it is actually class 3.
Table 1
Error table of misclassification.

Class 0 (pred) Class 1 (pred) Class 2 (pred) Class 3 (pred)

Class 0 (actual) 0.0 0.1 0.7 1.0
Class 1 (actual) 0.1 0.0 0.3 0.7
Class 2 (actual) 0.7 0.3 0.0 0.3
Class 3 (actual) 1.0 0.7 0.3 0.0

Fig. 17. Error analysis for a chosen subset of slides and competitors. For the sake of clarit
details on the challenge website14)
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More formally, for the development of their algorithm the competi-
tors had access to a training set of roughly 1000 whole slide images
WSIitrain i in 1..N for which a global label yitrain i in 1..N (with values in
{0,1,2,3}) was available for each WSI (in addition a leaderboard of
roughly 500 WSI was provided over the course of the challenge training
in order for the competitors to compare each other performance).

The final score is calculated over a testing set of 1024 other WSIs
WSIitest i in 1..N’ for which the labels yitest i in 1..N’ (with values in
{0,1,2,3}) were not be provided to the competitors. Given a testing
whole slide image WSIitest, let yitest in {0,1,2,3} be the predicted label
by one of the competitors’ algorithm. Then the algorithm score is com-
puted as follows: Score = 1 – Error

where Error = 1/N Σ f(yi,ŷi) having the function f(yi,ŷi) defined by the
values defined in Table 1 for which the possible values of actual classes y
(resp. predicted classes ŷ) are indicated in the rows (resp. columns). The
Error varies from 0.0 (no error) to 1.0 (worst case: only very bad errors
with a penalty of 1.0 over each of the N’ test WSIs. This worst case will
never happen because of the label 1 and label 2 WSI in the data set. A sta-
tistical study has proven that a minimum score of 0.776 (max error of
0.224) corresponds to a potential naive algorithm giving the label 1 to all
slides.

In the following, we analyze the results in more details and specifically
we focus on themost severemisclassification by at least one of the top com-
petitors (class 0 ↔ class 3) (see Fig. 17).

Detailed analysis over three representative WSI

Out of the 1024 final test WSI, 12WSI were found of particular interest:
these slideswere problematic for at least one of the top competitors bymak-
ing a error level of at least 2 grade levels. Among these 12 slides, the board
of doctors selected 3 specific ones that were able to illustrate not only the
y, we selected three competitors among the top ones to analyze the results (seemore



Fig. 18. Lifeis2Short heatmaps for the problematic slide C08_B023_S08 (one slide of the original slide in Fig. 19). From left to right and top to bottomClass 0, 1, 2, 3 heatmaps.
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predictive power of AI algorithms for clinical usage but also the room for
improvements (see Fig. 17). It is worth noting that the errors were very
often explainable by the pathologists as ambiguous cases for instance and
will be discussed later on in this report. In complement, 2 interesting
Fig. 19.Algoscope: no detection of any abnormal regions in the problematic slide C08_B0
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additional slides (C11_C046_S11 and C11_C002_S11) were analyzed in
the Pathologist discussion paragraph concerning Tribun Health results.

The medical question addressed by this data challenge was the ability
for AI algorithms to assist the diagnosis of pathologists in order to classify
23_S08 graded 3 by the expert (one slice tissue over theWSI as presented in Fig. 20).



Fig. 20. Tribun Health: misclassification 0 for 3 by Tribun Health despite a small
region of class 3 detected in the slide (see next Fig. 21).
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cervical biopsy slides into 1 of the 4 WHO diagnostic categories (WHO
2020), from “normal” to invasive carcinoma, through low- or high grade le-
sions. The algorithms were asked to identify only the most severe diagnos-
tic class for each slide. A few months after the final event of the challenge,
the expert pathologists set up a board to assess the results and come upwith
a medical analysis on where and why the best algorithms failed.

For the sake of comparison, we present hereby the analysis of 3 compet-
itors. The one by Tribun Health and the one by Lifeis2Short that globally
make the same errors are similar pipelines, the one by Tribun Health
outperforming most of the competitors over the whole test data set.
Algoscope team outperforms the other competitors in the identification of
class 3 (and 2) slides which can be a big asset for automatic screening of pa-
tients (i.e., not missing critical cases). The other teams did not allocate time
resources to explain their methods afterwards: interestingly, most of these
competitors are called serial data challengers that can proceed any kind
of data without any kind of specific expertise on the topic. In particular,
one of the leading competitors’ processing pipeline did not make use of
any patch annotation but worked at the slide level annotation (see 14 and
15). Nevertheless, in statistical learning, scoring well does not imply being
usable at the clinical level. This is what we explore in the following with
the help of a post-challenge committee teaming up senior and junior pathol-
ogists as well as data scientists.

To sum up the methodology, we decided to compare 3 very representa-
tive WSI classification results: 1 problematic case C08_B023_S08, 1 perfect
slide C16_B022_S21, and 1 in-between case C12_B133_S12, given by the 2
teams that mixed pathologists and data scientists for the challenge,
known as Tribun Health and Algoscope. These slides were chosen by the
medical subgroup of the scientific council of the challenge and were pro-
vided to the contestants for their feedback about the failure cases in partic-
ular. We also discuss results of the third team we elected Lifeis2Short.
Fig. 21. TribunHealth: (a) Amitigated detection of the class 3 region on tone of the 2 tissu
by the algorithm. (b) The black square corresponds to a post-challenge annotation mad
Tribun_HeatMaps/C08_B023 in Supplementary Material).
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All in all, from now on, we give a thorough analysis of results by 3 repre-
sentative leading teams in the challenge over 3 representative slides (high-
lighted with a black background in Fig. 17): 1 case very problematic (not
classified as 3 but 0), 1 perfect case(classified as 3 by the 3 chosen competi-
tors), and 1 in-between case (classified as 2 instead of 3 but explainable).

The problematic case: WSI C08_B023_S08
This slide C08_B023_S08 was diagnosed class 3 by the experts and both

Tribun Health and Algoscope rated class 0 the slide. As stated in the meth-
odology section, Lifeis2Short team did not classified it in class 3 but in class
0 as illustrated in Fig. 18 just as the 2 other competitor algorithms.

Algoscope’s algorithm did not detect any abnormality on this slide (nei-
ther class 1, class 2, nor class 3 zone) as illustrated in Fig. 19, so the output
was class 0. After reviewing the whole slide with their pathologists team, it
seems that within the limit of these histological levels, without further in-
formation (deeper sections or concomitant biopsies on another slide ) the
rare areas with cellular atypia are too equivocal to clearly state whether it
is a high grade lesion with eroded epithelium (class 2) or an infiltrative car-
cinoma (class 3).

In Fig. 20, illustrations for Tribun Health results on this problematic
case is presented with detailed views in Fig. 21. The post-challenge annota-
tion by the experts confirms that a small area of class 3 has been well de-
tected by the patch level classifier but discarded from the final prediction
by the slide level classifier. This error is probably due to the
histogram-based features that does not sufficiently well model the tissue
class distribution when one of the classes is of small size. Improving the fea-
ture extraction part is important for avoiding such an error.

Neither Algoscope nor Lifeis2Short did detect any abnormality on this
slide (neither class 1, class 2, nor class 3 zone), so the output was class 0.
After reviewing the whole slide with the expert pathologists, the lesion is
indeed difficult since it is very small and at the border of the tissue section.
Careful reviewing of this case showed that some experts suggested that this
small island might be rather class 2 than class 3, while other experts main-
tained class 3 diagnosis. For Tribun Health, as mentioned earlier, the small
focus was however labeled class 3 on the heatmap but the final score was
class 0. The determination of the threshold used for taking into account a
small area is therefore an important feature of an algorithm, with a direct
impact on sensitivity and specificity.

One perfect case:WSI C16_B022_S21
This slide was misclassified by one of the best competitors (see

Fig. 17) but the algorithm of the 3 competitors who participated in
this paper all agreed with the expert pathologists panel and scored it
as a class 3 slide.
e slices in theWSI. (c) The yellow regions corresponds to the class 3 regions detected
e by the pathologists to explain their WSI level annotation of class 3 slide (Folder:



Fig. 22. Algoscope: detection of class 3 regions on the slide correctly classified as class 3 for slide C16_B022_S21 (See SupplementaryMaterial to dig into the images at better
resolution in Algoscope folder).
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TheAlgoscope algorithm correctly classified this slide as a class 3WSI. It
detected infiltrating carcinoma all over theWSI as illustrated in Fig. 22. The
Tribun Health algorithm correctly assigned the slides to class 3 as well (see
Fig. 23).
The in-between case: WSI C12_B133_S12
This slide has been diagnosed as class 3 by the experts but all 3 algo-

rithms diagnoses it as class 2.
The Algoscope algorithm detected a single area of invasive carcinoma

(the red square annotation in Fig. 24 as class 3), several areas of high
grade lesion (the green squares annotation in Fig. 25 as class 2) and one
area of low grade (the blue square annotation in Fig. 24 as class 1). The
set diagnosis was: high grade lesion (class 2), because much more areas of
class 2 were detected by the algorithm and likely to fit with the misclassifi-
cation risk score for winning the competition. However, it is interesting to
note that several areas of infiltrating carcinoma (on the upper left biopsy
fragment) were not detected (probably due to the fact that the detection
threshold is slightly too high). All in all, the algorithm detected an area of
invasive carcinoma (class 3) but still made the diagnosis of a high grade le-
sion because it had found many more regions of class 2.

The Tribun Health algorithm classified as well the slide as class 2 in-
stead of class 3 but did not detect class 3 areas (see Fig. 25). Again, these
findings point out the importance of choosing the right threshold for taking
into account, or not, a small area compared to much bigger areas.
15
The pathologists’ discussion

This data challenge focused on epithelial lesions of the uterine cervix.
These lesions account for an important amount of cases in the daily practice
of pathologists. Tools that would pre-identify these lesions and prioritize
most severe cases would be therefore very useful for pathologists in order
to save diagnostic time.

Among over 500 competitors, we chose the best algorithms accord-
ing to their final scores on the evaluation set. Their capacity in distin-
guishing the four diagnostic classes of cervical epithelial lesions
(normal, low grade, high grade, invasive tumor) was excellent since,
out of 1024 slides of the final validation set, there were only 12 slides
showing at least one “two classes error compared to ground-truth” for
at least one of the best competitors.

Beside these excellent results, we decided in this work to focus on these
discordant situations, looking for potential explanations to these discrepan-
cies, leading to a better understanding of the “A.I. black box” by patholo-
gists and health practitioners.

The results presented in this paper showed that the detection sensitivity
of some algorithms was extremely high even with very small lesions made
of only a few cells, as shown on one competitor heatmap (see Fig. 20).

However, the final output of the algorithms still contained a few “2 or 3
classes or grade error discrepancy” that the medical panel analyzed one by
one. In a few situations, the algorithm indeed found a challenging area on
the slide but misinterpreted it, mostly due to a lack of training of unusual



Fig. 23. Tribun Health: class 0 and 3 regions detected for a slide correctly classified as 3 for slide C16_B022_S21 (Folder Tribun_HeatMaps/C16_B022 in Supplementary
Material).
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images such as inflammatory infiltrates, vessels, or technical artifacts. In-
creasing the amount of training slides will improve the classifications. We
specifically noticed that most significant errors of the algorithms were
made on large pieces of tissue. Usually, cervical biopsies are 1–3 mm
large but in some cases, they can be larger and the problems in large sam-
ples can be different, with other histological structures appearing in the
deep part of the sample, that are not present in more superficial biopsies.
This lack of training data issue emphasizes the need for large amounts of
training sets of all kind of samples and tissues. This is a challenge in itself
regarding the regulations and constraints about obtaining human tissues
in many countries.

Also, optimizing all technical pre-analytical steps of the slides will also
reduce technical artifacts and possible pitfalls for AI.

Sensitivity thresholds are also a crucial choice that the competitors have
to deal with in a data challenge. It is indeed important in order to win the
competition to optimize the choices made by the algorithm as compared
to the metric established by the organizers. The algorithms have all been
built in order to fulfill this competition goal. In the true diagnostic setting,
detection thresholds will not be optimized to a metric, but rather will be
adjusted in order to maximize the chance of detecting important lesions,
especially high grade or malignant ones. In real life, pathologists will in-
deed certainly prefer one heatmap showing a tiny area with possible
16
malignant cells, rather than an overall AI judgment that will choose not
to mention this tiny area and will refer only to the majority of non-tumoral
slide. In otherwords, it is likely that pathologists will prefer highly sensitive
tools rather than highly specific ones, the final choice between benign and
malignant lesions being done by the pathologist. The examples that we re-
port in this paper where an area of “class 3 – tumor area” is finally not men-
tioned in the overall score should not be encountered in the real diagnostic
setting (see Fig. 21).

Another limit for the training of algorithms are the unavoidable
borderline situations, when even experts might be slightly divergent
regarding some complex lesions, because of their rarity, because of
the need of other staining on the sample, or because of non optimal tis-
sue sampling or non-optimal tissue processing. During the preparation
of the challenge, a few cases were already rejected from the challenge
because of these kind of situations. However, when the pathologists
looked again in details at the 12 slides selected for this paper, 1 slide
was still somehow problematic, and the experts could not fully agree
on a small lesion, whether it was a class 2 or a class 3 lesion. This situ-
ation actually accounts for true life and true difficult pathology cases,
often combining intrinsic complexity and technical/sampling limits.
Such cases without clear-cut ground truth are not surprisingly difficult
as well for algorithms.



Fig. 24.Algoscope on the class 3 in-betweeen C12_B133_S12 case: detection of class 2 (green annotation) and class 3 (red annotations) regions on the slidefinally labeled 2 by
the algorithm instead of class 3. Regions detected as class 1 areas are also highlighted within blue squares (See Supplementary Material to dig into the images at better
resolution in Algoscope folder).

Fig. 25. Tribun Health on the class 3 in-betweeen C12_B133_S12 case: class 0, 2,
and 3 detection region for a class 3 slide (Folder Tribun_HeatMaps/C12_B133 in
Supplementary Material).
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Conclusion

In this work, the pathologists realized that the AI box is actually not so
black, and that, at least for some of the best algorithms that emerged in this
competition, discrepancies between AI and ground truth can be explained
most of the time. Our findings are of course very preliminary and focused
on one type of pathology and one type of tissue sample, but they pave the
way for improving the level of confidence of health practitioners who will
one day work with the help of these algorithms.
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